Kohlepfennig

Ausgleichsabgabe für die Stromerzeugung aus heimischer Steinkohle, die seit 1974 jeder Stromverbraucher in den alten Bundesländern in Form eines prozentualen Aufschlags auf die Stromrechnung zu entrichten hat.

Mit dem K. werden die Energieversorgungsunternehmen dafür entschädigt, daß sie sich im sog. Jahrhundertvertrag dazu verpflichteten, deutsche Steinkohle zu verstromen. 1990 zahlten die Stromverbraucher durchschnittlich 8,25% ihrer Stromrechnung für den K., die Stromerzeuger erhielten umgekehrt etwa 5,3 Mrd DM. Der K. soll Ende 1995 abgeschafft werden.
Wiederholt wurde vorgeschlagen, analog zum K. einen "regenerativen Pfennig" zur verstärkten Markteinführung regenerativer Energiequellen zu verabschieden.

Autor: KATALYSE Institut

Kohlekraftwerk

In Kohlekraftwerken wird zur Stromerzeugung Braun- oder Steinkohle verbrannt (Kraftwerk, Kohle).

Kohlekraftwerke gehören immer noch zu den größten Luftverschmutzern in Deutschland (Schwefeldioxid, Stickoxide,Kohlendioxid). In Kohlekraftwerken ohne Abgasreinigung erzeugt Steinkohle bei gleicher Leistung mehr Schadstoffe als rheinische Braunkohle:

- SO2: Wegen des höheren Schwefelgehalts der Steinkohle und der schlechteren Schwefeleinbindung in die Asche bis zum Zweifachen.
- NOx: wegen der höheren Verbrennungstemperatur, v.a. bei der Schmelzfeuerung, bis zur zweifachen Menge.

Im Gegensatz zur rheinischen Braunkohleist die Braunkohle aus den neuen Bundesländern besonders schwefelhaltig.
Kohlekraftwerke können heute nicht mehr ohne aufwendige Abgasreinigung betrieben werden, da die Auflagen der Großfeuerungsanlagen-Verordnung und Folgebeschlüsse (Großfeuerungsanlagenverordnung) einzuhalten sind.

Braun- und Steinkohle-Kohlekraftwerke benötigen Rauchgasentstaubungs- undRauchgasentschwefelungsanlagen; während Braun-Kohlekraftwerke mit Hilfe von sogenannten Primärmaßnahmen die geforderten Stickoxidgrenzwerte z.T. unterschreiten (Stickoxidminderung), müssen Stein-Kohlekraftwerke stets auch über eine Abwärme an und belasten die Umwelt (Kühlturm). Um die Umsetztung der eingesetzten Primärenergie zu verbessern, kann die Kraft-Wärme-Kopplung eingesetzt werden. Hierbei wird die anfallende Abwärme zum Beispiel als Nah- oder Fernwärme verwendet und dadurch die Wirkungsbilanz deutlich verbessert.

Emissionen von Kohlekraftwerken im Vergleich: Kraftwerk, Fernwärme
Wiederholt wurde behauptet, daß von Kohlekraftwerken eine radioaktive Belastung ausgehe. Tatsächlich enthält Kohle in geringen Mengen radioaktive Substanzen (Uran, Thorium und Kalium; natürliche
Strahlenbelastung), die nach derVerbrennung mit der Flugasche in die Umwelt gelangen und sich am Bodenablagern. Da sich die Konzentrationen der radioaktiven Substanzen in Boden undFlugasche kaum unterscheiden, geht von der Flugasche jedoch keine zusätzliche radioaktive Belastung aus.

Etwa die Hälfte des deutschen Stromes wird aus Kohle gewonnen, Steinkohle undBraunkohle sind dabei in etwa gleich stark vertreten. Die heute bekannten Lagerstätten und Technologien haben eien Reichweite von etwa 300 Jahren.

Der Wirkungsgrad von modernen Kohlekraftwerken liegt bei etwa 40-45 Prozent, die hohe Zahl gilt für Kraftwerke, die mit modernen Dampfturbinen ausgestattet sind, deren Dampfeinlaßtemperatur 600 Grad erreicht. Das heißt: Mehr als 55 % der eingesetzten Energie in Form von Wärme können nicht genutzt werden und gehen über den Kühlturm verloren.

Ein höherer Wirkungsgrad kann durch die Erzeugung von heißem Gas aus einer Gasturbine erreicht werden.
Solche aus Gas- und Dampfturbine bestehenden Kraftwerke nennt man daher auch GuD-Kraftwerke (Gas- und Dampf-Kraftwerke).

Autor: KATALYSE Institut

Kofermentation

Unter Kofermatation versteht man die gemeinsame Vergärung von Tierexkrementen (Gülle, Mist etc.) aus der Landwirtschaft mit Biomasse(kohlenhydrat- und ölhaltigen Pflanzen wie
Mais, Raps oder Grünabfällen) oder mit festen organischen Abfällen wie z.B. Schlachtabfälle, Bioabfall, Reststoffe aus der Lebensmittelindustrie.

Durch die Zugabe nährstoffreicher und leicht abbaubarer Kofermente (Altfette, Grünabfall usw.) werden die BiogasAusbeuten aus Gülle stark erhöht. Als Ausgangsstoffe für die Kofermentation kommen grundsätzlich alle anaerobabbaubaren organischen Reststoffe in Frage: Extraktions-, Destillations- u. Prozessrückstände aus der Brauerei- u. gemüseverarbeitenden Industrie, Schlachthofabfälle, Metzgereiabfälle; Bioabfall, Abfälle des Lebensmittelgewerbes, organische Rückstände des Hotel-, Gaststätten- und Großküchengewerbes; Reststoffe der Landschaftspflege (u.a. Grüngut) u.ä.

Mit dem Einsatz von bestimmten Kofermenten kann der Biogasanlagen-Betreiber zusätzliche Einnahmen aus der Abnahme der organischen Abfallstoffe realisieren und so die Wirtschaftlichkeit seiner Biogasanlage erheblich verbessern. Speiseabfälle
aus Großküchen und Schlachtabfälle müssen aus seuchenhygienischen Gründen einer Pasteurisierung (Erhitzung auf 70°C für eine Stunde) unterzogen werden.

Unter Kofermatation wird auch die Vergärung von Klärschlamm aus Kläranlagen zusammen mit festen, organischen Abfällen aus dem nicht-landwirtschaftlichen Bereich verstanden.

Literatur: Kofermentation; 2. Auflage KTBL-Arbeitspapier Nr. 249, Darmstadt 1998

Autor: KATALYSE Institut

Klärgas

Biogas, das bei der Ausfaulung von Klärschlamm entsteht.

Siehe auch: Abwasserreinigung, Verbrennung und Schadstoffe, Klärschlamm, Deponiegas, Methan

Autor: KATALYSE Institut

Kernspaltung

Bei der Spaltung schwerer Atomkerne in zwei leichte Kerne werden große Mengen Energie in Form von Wärme frei.

Von besonderem Interesse sind Spaltstoffe wie Uran und Plutonium. Sie lassen sich durch Neutronen unter Energieabgabe spalten und geben gleichzeitig mehrere Neutronen ab, die neue K. auslösen können (Kettenreaktion). Die kleinste Spaltstoffmasse, die eine sich selbst erhaltende Kettenreaktion in Gang setzt, ist die kritische Masse, bei Uran-235: ca. 50kg, bei Plutonium-239: ca. 5kg. Durch technische Maßnahmen kann die kritische Masse verringert werden.
Spaltstoffe werden in Atomwaffen (Kettenreaktion) und Kernreaktoren inKernkraftwerken (kontrollierte K.) eingesetzt.

Die bei der K. entstehenden Spaltprodukte sind radioaktiv und zerfallen unter Aussendung von Alpha-, Beta- und Gammastrahlung (Radioaktivität). Insgesamt entstehen etwa 200 künstliche Radionuklide. Bei der K. von 1g Uran-235 wird dieselbe Energie frei wie bei der Verbrennung von 3t Steinkohle. Technische Nutzung und Umweltauswirkungen: Kernkraftwerk, Hochtemperaturreaktor, Schneller Brüter, Brennstoffkreislauf . Das Gegenteil der K. ist die Kernfusion.

Autor: KATALYSE Institut

Kernreaktor

Anlage, mit deren Hilfe sich Kernspaltungen einleiten, aufrechterhalten und steuern lassen. Hauptbestandteil ist der Reaktorkern mit in Brennelementen angeordnetem Spaltstoff, meist Uran-235, in dem die Kernspaltungen ablaufen.

Durch einen Moderator werden die bei der Spaltung erzeugten schnellen Neutronen abgebremst, da langsame Neutronen Uran-235 besser spalten können. Regelstäbe steuern den Neutronenfluß.

Die bei der Spaltung erzeugte Wärme wird von einem unter Druck stehenden Kühlmittel abgeführt (Kernschmelzen). Der Reaktorkern ist umgeben von dem Reaktordruckbehälter, der allen Belastungen durch Druck, Temperatur und Strahlung standhalten soll (Berstschutz, GAU). Außen schließt sich eine Beton-Abschirmung an, die die Umgebung vor Gamma- und Neutronenstrahlung schützt. Kommerziell betrieben werden K. in Kernkraftwerken.

Umweltbelastungen: Kernkraftwerk, GAU
Spezielle K.: Schneller Brüter, Hochtemperaturreaktor

Siehe auch: Kernspaltungen, Brennelementen, Spaltstoff

Autor: KATALYSE Institut

Kernkraftwerk

Kernkraftwerke gewinnen die zur Stromerzeugung notwendige Prozesswärme nicht durch die Verbrennung fossiler Brennstoffe oder durch Sonnenenergie, sondern durch Kernspaltung.

Allgemeine Funktionsweise

Die beim Zerfall radioaktiver Stoffe entstehende Hitze wird dazu genutzt, um überhitzten Dampf (also gasförmiges Wasser) zu erzeugen, der dazu genutzt wird eine oder mehrere Turbinen anzutreiben. An die Turbine gekoppelt ist ein Generator, der den Strom erzeugt.

Reaktortechnik

Weltweit vorherrschend ist der Leichtwasserreaktor (LWR, als Druckwasser- oder Siedewasser-Reaktor realisiert), weitere Reaktortypen sind der Schnelle Brüter, der Hochtemperatur- und der Druckröhrenreaktor (Reaktortyp inTschernobyl). Die Kernspaltung läuft imKernreaktor ab, der aus Sicherheitsgründen i.d.R. von einem Sicherheitsbehälter (Containment) und einer Stahlbetonkuppel umgeben ist. Der LWR verwendet als Kühlmittel und Moderator (Neutronenbremse) normales Wasser, das beim Druckwasserreaktor unter so hohem Druck steht, dass es trotz Aufheizung auf ca. 325 Grad C im Primärkühlkreis nicht verdampft. Die bei der Kernspaltungfreigesetzte Wärme wird von einem Primärkühlsystem aufgenommen und über Wärmetauscher an einen Sekundärkreislauf abgegeben, in dem Wasserdampf Turbinen zur Stromerzeugung antreibt.

Umweltbelastungen während des Betriebs

Nichtradioaktive Umweltbelastung: Kernkraftwerke mit ihrer hohen elektrischen Leistung (Standard 1.200 MWe, elektrisch abgegebene Leistung) und ihrem schlechten thermischen Wirkungsgrad von 35 Prozent belasten Umwelt und insbesondere Flüsse durch große Mengen an Abwärme. Ein Wirkungsgrad von 35 Prozent bedeutet, dass zur Erzeugung von 1200 MWe ca. 3500MW thermische Leistung innerhalb des Reaktors zur Verfügung gestellt werden müssen und die Differenz als Wärme abgeführt werden muss. Dies geschieht meist in einem Nasskühlturm. Eine ortsnahe Kraft-Wärme-Kopplung (KWK) ist wegen der hohen Gefahren im Falle eines Störfalls (Radioaktivität könnte z.B. über die KWK schneller in Wohngebiete übertragen werden) und der damit verbundenen hohen Anforderungen an die Sicherheitstechnik nicht sinnvoll.

Radioaktive Umweltbelastung: Auch im störungsfreien Normalbetrieb gibt ein Kernkraftwerk ständig radioaktive Substanzen an Luft und Wasser ab, die sich in derUmwelt anreichern und über mehr als 100.000 Jahre weiter strahlen und zu schwer abschätzbaren Schäden führen kann. Innerhalb des Kraftwerks werden große Mengen radioaktiver Substanzen erzeugt. Durch die Kernspaltung entstehen etwa 200 radioaktive Substanzen (künstliche Radionuklide), die in der Natur nicht vorkommen. Durch kleinste Risse in den Brennstabhüllen (Brennelement) gelangen so vor allem die radioaktiven Edelgase Xenon und Krypton, die leicht flüchtigen Stoffe Iod und Cäsium sowie Strontium in den Primärkreislauf.

Die höchsten radioaktiven Emissionen entstehen im störungsfreien Betrieb nicht beim Kernkraftwerksbetrieb, sondern bei der Brennstoffver- und Entsorgung(Brennstoffkreislauf). Die abgebrannten Brennelemente enthalten radioaktive Substanzen: 1% Plutonium und über 3% Spaltprodukte (Kernspaltung,Wiederaufarbeitung, Atommüll). Zusätzlich fallen jährlich ca. 1.300 Fässer schwach- und 100 Fässer mittelaktiver Atommüll an. Nach einer Betriebszeit von 15-30 Jahren stehen zudem Abriss und Entsorgung des Kernkraftwerkes an (s.u.).

Durch vom Kernreaktor ausgehende Neutronenstrahlung werden weitere radioaktive Substanzen erzeugt (Tritium, Argon-41), die sich im Kühlmittel, in den Verunreinigungen des Kühlmittels (Korrosion) und in anderen Anlagenteilen finden. Entweichende Substanzen werden durch aufwendige Filter zum großen Teil zurückgehalten, der Rest gelangt über Abwasser und Abluft (Schornstein oder unkontrolliert) in die Umwelt.

Von Kernkraftwerken gehen im störungsfreien Normalbetrieb allerdings erheblich geringere radioaktive Emissionen aus als von Wiederaufarbeitungsanlagen. Die Höhe der radioaktiven Emissionen in Becquerel sagt wenig über
Strahlenbelastungund Strahlenschäden von Mensch und Umwelt aus. Diese hängen ab von: Halbwertszeiten der radioaktiven Stoffe, Art und Energie der von ihnen ausgehenden ionisierenden Strahlung (Radioaktivität und Strahlung, Maßeinheiten), ihrer Ausbreitung in der Umwelt und ihrer Anreicherung in Boden, Pflanzen, Tieren und Menschen. Infolge dessen gelangen die radioaktiven Stoffe in die Nahrungsmittelkette.

Risiken

Kernkraftwerke zeichnen sich durch ein mit konventionellen Energieversorgungsarten und –technologien unvergleichlich höheres Gefährdungs- / Risikopotenzial aus. Unfälle oder Störfälle infolge von technischen Pannen, menschlichem Versagen, Erdbeben, Flugzeugabstürzen, Sabotage oder Kriegseinwirkung gehen mit hoher Wahrscheinlichkeit mit dem Austreten radioaktiverStrahlung einher, die mit dramatischen Schadwirkungen für den Menschen und dieUmwelt verbunden ist.

Strahlenbelastung

Angaben über die
Strahlenbelastung durch Kernkraftwerke beruhen auf Computersimulationen, die mit großen Fehlerquellen (z.B. hinsichtlich derAusbreitung radioaktiver Substanzen) behaftet sind. Die direkte Messung der
Strahlenbelastung ist nur für die äußere Gamma- und Betastrahlung (natürlicheStrahlung aus dem All und der Umwelt) möglich. Die besonders gefährlicheAlphastrahlung ist nur mit extremem Aufwand nachweisbar, sobald sie von Organismen aufgenommen wurde.
Die gesetzlich festgelegten Grenzwerte finden Sie auf der Webseite des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit in derStrahlenschutzverordnung . Der zulässige Höchstwert im Störfall beträgt 50mSv. Über das Jahr verteilt ist eine maximale
Strahlenbelastung von weniger als 0,3 mSv/Jahr (Milli-Sievert) effektive (tatsächliche) Strahlendosis in der Umgebung von Kernkraftwerken zulässig (vgl. Strahlenschutzverordnung § 47, Begrenzung der Ableitung radioaktiver Stoffe).

Arbeiter in Kernkraftwerken sind Strahlenbelastungen von etlichen mSv jährlich ausgesetzt. Damit Fachkräfte die zulässigen Grenzwerte von 50 mSv/Jahr nicht überschreiten, werden in stark strahlenden (heißen) Zonen nukleare ‚Tagelöhner‘ eingesetzt (Dosimeter). Bei US-Atomarbeitern wurde wiederholt eine Erhöhung des Risikos für Krebserkrankungen durch somatische Strahlenschäden festgestellt; in Ausnahmefällen kann es sogar zu akuten Strahlenschäden kommen (Strahlenkrankheit, Kontamination). Eine 1992 veröffentlichte Studie des britischen Amtes für Strahlenschutz zeigt auf, dass das Risiko für Beschäftigte in Atomanlagen, an Leukämie zu sterben, wesentlich größer ist, als bis dahin angenommen. Die Studie stellt bei einem Untersuchungszeitraum von 16 Jahren und einem Probenumfang von 95.000 Beschäftigten einen klaren Zusammenhang zwischen Leukämiefällen und der Strahlendosis her, die die Betroffenen im Laufe ihres Arbeitslebens erhalten haben.

In Deutschland wurden in den letzten Jahren in verschiedenen Studien auch Schäden an der Bevölkerung sichtbar. Für Kinder unter 5 Jahren im engeren Umkreis westdeutscher Kernkraftwerke besteht nach den Ergebnissen einer 1992 veröffentlichten Studie der Universität Mainz ein erhöhtes Risiko, an Leukämie zu erkranken. Am stärksten betroffen ist die Umgebung des Kernkraftwerkes Krümmel bzw. des Atomforschungszentrums Geesthacht; hier wurde eine um das 10-15fach erhöhte Leukämierate gefunden.

Unfälle und damit verbundene Folgen

Bei Kernkraftwerk-Unfällen können sich die Belastungen für die Umgebung erheblich erhöhen. Störunfälle werden international mit der von der IAEA (International Atomic Energy Agency) von eins bis sieben reichenden festgelegten INES-Skala beurteilt. Tritt bei einem Unfall eine große Menge Radioaktivität aus, so hat dies langandauernde und weit reichende Folgen für die Umwelt.

Einige bekannt gewordene prominente Unfälle

  • 2011: Fukushima, Japan.
    INES Gefährdungsstufe 6 (aktueller Status März 2011 noch unklar, nach Ansicht von Greenpeace-Experten INES 7).
  • 1986 -Tschernobyl, UdSSR
    INES Gefährdungsstufe 7
    Weitreichende Gesundheits- und Umweltbelastung. Kernschmelze mit nachfolgender Freisetzung einer hohen Strahlungsmenge durch die Explosion des Reaktorkerns.
  • 1979 Harrisburg, Three Mile Island
    INES Gefährdungsstufe 5
    Kernschmelze, deren Austritt gerade noch verhindert werden konnte.
  • 1957 Kyshtym, UdSSR
    INES Gefährdungsstufe 6
    Freisetzung von signifikanten Mengen radioaktiven Materials in die Umwelt, verursacht durch eine Explosion eines hochaktiven Abklingbehälters.
  • 1957 Windscale Pile, Großbritannien
    INES Gefährdungsstufe 5
    Freisetzung radioaktiven Materials in die Umwelt, verursacht durch einen Brand im Reaktorkern.

Die Kernkrafttechnologie wird von Rückversicherern als unversicherbares Risiko eingestuft, da die Kosten nach einem Unfall nicht abschätzbar sind. Der Super-GAUin Tschernobyl (hervorgerufen durch einen Reaktor) verursachte Schäden in Höhe von ca. 200 Milliarden Euro. Als Vergleich: Die Rückversicherung der deutschen Kernkraftwerksbetreiber haftet bei einem Unfall bis zu einer Summe bis zu 2,5 Milliarden Euro.

Stichworte: Störfallabläufe und Auswirkung: Kernschmelzen, GAU, Super-Gau,Schneller Brüter.

Entsorgung

Die Entsorgung von Atommüll stellt den Menschen vor unlösbare Probleme, da dieser bis zu 100.000 Jahre weiter strahlt. Nicht nur die Entsorgung ausgebrannter Brennelemente bereitet Schwierigkeiten, sondern auch die Demontage eines außer Betrieb genommenen Kraftwerks, da die Bauteile nach Betriebsende weiter strahlen und nur unter hohen Sicherheitsmaßnahmen zerlegt werden können. Die Demontage eines Kraftwerks dauert oft mehrere Jahre und bedeutet eine erhöhte Belastung für die Umgebung.
Siehe auch Atommüll

Entwicklung

Anzahl der Kernkraftwerke weltweit

Im März 2011 sind weltweit 443 Kernkraftwerke mit einer Leistung von 377.750 MW in Betrieb und 158 Neubauten geplant. Deutschlandweit sind 17 Kraftwerke in Betrieb und vorerst keine Neubauten geplant. (Zahlen vgl.: World Nuclear Association)

Infolge der Reaktorunfälle in Harrisburg (1979) und Tschernobyl (1986) war die Expansion der nuklearen Energie deutlich zurückgegangen. 1992 waren weltweit 414 Reaktoren mit insgesamt 323 GW in Betrieb; 1989 waren es noch 421.

Ausblick

Mit Realisierung der Pläne der DESERTEC Foundation für die EU-MENA-Staaten (Europe Middle East North Africa) wird innerhalb des nächsten Jahrzehnts Ersatz für die überholte und unverhältnismäßig risikobehaftete Kernkrafttechnologie geschaffen. Die Sonne ist als preiswerter und permanent vorhandener Energieträger ein guter Ersatz. Die Kombination aus Wasserspeicherkraftwerken, Windenergieanlagen und solarthermischen Großanlagen im 250MW-Bereich aufwärts und ein intelligentes Energiemanagement („Smart Grid“) bilden eine solide und sichere Grundlage der zukünftigen Energieversorgung und stellen die bisher von Kernkraftwerken gebildete Grundlast dauerhaft bereit (vgl.: Artikel aus den DLR-Nachrichten und FAQ der DESERTEC Foundation zu diesem Thema). Weitere Vorteile der Technologien sind die vergleichsweise einfachere Entsorgung und die Möglichkeit, Hybridkraftwerke zu bauen, die als Unterstützung zur Dampferzeugung noch eine konventionelle Gasturbine erhalten.

Stand 03 2011, überarbeitet von Jan Niemeyer

Autor: KATALYSE Institut

Kernfusion

Die Fusion oder Verschmelzung leichter Atomkerne setzt wie die Kernspaltung schwerer Atomkerne große Mengen Energie frei.

Sterne, wie z.B. die Sonne, beziehen ihre Energie aus der Kernfusion vonWasserstoff zu Helium. Technisch interessant ist die Verschmelzung von Tritium(überschwerer Wasserstoff) und Deuterium (schwerer Wasserstoff) zu Helium, die im magnetisch eingeschlossenen Plasma bei einer Temperatur von über 100 Mio Grad C zündet. Dabei wird pro Gramm Fusionsbrennstoff die Energie von 12,4 tKohle frei.
Erste technische Realisierung 1952 als Wasserstoffbombe (Atomwaffen). 

Obwohl seit den 60er Jahren an der kontrollierten Nutzung in Kernfusion-Kraftwerken gearbeitet wird und z.Z. jährlich weltweit ca. 3 Mrd DM (EG: 1 Mrd/Jahr) ausgegeben werden, ist eine großtechnische Anwendung nicht vor dem Jahr 2050 zu erwarten.
Die anfängliche Euphorie von der unerschöpflichen, sauberen und billigenEnergie aus Kernfusion ist heute gedämpft:

Die energiereiche Neutronenstrahlung macht den Reaktormantel spröde und radioaktiv (Radioaktivität), so daß dieser alle paar Jahre ausgewechselt und als hochradioaktiver Atommüll endgelagert werden muß. Die strahlenden Abfälle werden auf das Doppelte der Atommüllmenge eines Leichtwasserreaktors (Kernkraftwerk) geschätzt. Aufgrund der kürzeren Halbwertszeiten sind sie aber vermutlich einfacher zu entsorgen.

Die größte Gefahr geht im Betrieb von Tritium aus, das nur mit großem technischen Aufwand zurückgehalten werden kann. Auch im Normalbetrieb werden wesentliche Mengen Tritium aus der Anlage entweichen. Fachleute rechnen mit einer effektiven Dosis (Strahlendosis) am ungünstigsten Ort von über 0,6 mSv (Sievert) pro Jahr für einen 1.000 MW Kernfusions-Reaktor. Damit wäre der Reaktor derzeit nicht genehmigungsfähig (Strahlenschutzverordnung) und die Belastung im Normalbetrieb erheblich höher als beim Kernkraftwerk (
Strahlenbelastung). Fraglich ist auch, ob im Innern der Anlage die Grenzwerte für beruflich strahlenexponierte Personen eingehalten werden können.

Größter Unfall beim Kernfusions-Kraftwerk ist der Bruch einer Tritiumhauptleitung, der z.B. durch nicht beherrschte Plasma-Instabilitäten, Wandkontakt des Plasmas und anschließende Zerstörung des Reaktorgefäßes verursacht werden kann.
Der Brennstoff ist reichlich vorhanden (Deuterium in Weltmeeren, Tritium kann aus Lithium gewonnen werden), Engpässe können bei Kupfer (Magnetspulen), Chromund Molybdän (Stahlveredler) auftreten, die für den Bau von Anlagen zur Kernfusion in großen Mengen benötigt werden.

Kernfusion-Kraftwerke werden mit Leistungen von 3.000-4.000 MW zu großen Abwärmeproblemen (Abwärme ) und zu einer weiteren Zentralisierung der Stromversorgung führen. Die Komplexität der Anlagen macht sie stör- und sabotageanfällig und gefährdet die Versorgungssicherheit. Aus wirtschaftlichen Gründen wird auch an sog. Hybridreaktoren gedacht, in denen neben der Kernfusion mit Hilfe schneller Neutronen Plutonium erbrütet wird (Schneller Brüter). Solche Anlagen stellen aufgrund des Plutoniuminventars und des anfallenden Atommülls ein besonders großes Gefahrenpotential dar.

Zu den im Fusionsreaktor vorhandenen, chemisch-toxikologischen Stoffen gehören Lithium, welches als Brut- und Kühlmittel verwendet wird und Beryllium, das in einigen Entwürfen als Neutronenmultiplikator vorgesehen ist. Im Falle eines Störfalls können die Stoffe freigesetzt werden. Unklar ist, inwiefern von den extrem starken Magnetfeldern Gefahren für das Personal ausgehen (Elektrosmog).

Ein neues, eventuell vielversprechendes Konzept zur Kernfusion stellt der Maglich-Reaktor dar.

Aktueller Stand:
Im englischen Experimental-Fusionsreaktor JET gelang es 1991 nach 30jähriger Forschung erstmals, eine kontrollierte Kernfusion aus 1,2 g Deuterium und 0,2 gTritium in die Wege zu leiten, bei der 2 Sekunden lang bei 200 Mio Grad C eine Leistung von 2 MW freigesetzt wurde. Der nächste Experimentalreaktor der EG ist der ITER, dessen Baubeginn unter Beteiligung der USA, GUS und Japan für 1997 geplant ist. Das auf 20 Jahre ausgelegte Projekt wird mit mindestens 16 Mrd DM veranschlagt. Bei der Standortwahl haben deutsche Standorte (Greifswald oder Garching bei München) gute Chancen. Im Jahre 2020 soll dann der erste Demonstrationsreaktor gebaut werden.

Kritiker führen an, daß hier Mrd DM in eine Technologie investiert werden, von der nicht abzusehen ist, ob sie jemals kommerziell Strom bei geringen Umweltbelastungen produzieren kann, wohingegen regenerativen Energiequellen, von denen wir wissen, daß sie funktionieren, gerade diese Mrd DM zur Markteinführung fehlen.

Siehe auch: Kernspaltung, Energie

Autor: KATALYSE Institut

Kernenergie

Siehe: Kernspaltung, Kernfusion, Kernkraftwerk.

Autor: KATALYSE Institut

Holzverbrennung

Holz hat einen geringeren Schwefelgehalt und setzt daher bei seiner Verbrennung weniger Schwefeldioxid frei als Heizöl und Kohle.

Wegen der i.a. niedrigeren Verbrennungstemperaturen entstehen außerdem weniger Stickoxide als in öl-,kohle- oder gasgefeuerten Anlagen (Heizung). Allerdings führt die besonders in kleinen Anlagen häufige unvollständige Holzverbrennung zum Ausstoß vonKohlenmonoxid und Kohlenwasserstoffen. Letztere sind Ursache von Geruchsbelästigungen und z.T. krebserzeugend (Polycyclische aromatische Kohlenwasserstoffe).

Nichtflüchtige Kohlenwasserstoffe (Teer, Ruß) tragen neben der Asche zurStaub-Emission bei. Die Vollständigkeit der Verbrennung hängt ab von Feuerungstechnik (Temperatur, Luftzufuhr, Größe des Brennraums) und Holzeigenschaften (Feuchtigkeit, Zusatzstoffe z.B. in Spanplatten, Holzart).Holzwerkstoffe wie Spanplatten, Sperrholz oder mit Lacken bzw. Kunststoffen beschichtete Hölzer sollten aufgrund ihrer zusätzlichen Schadstoffemissionen nur in speziellen Großfeuerungen verbrannt werden.

Bei kleinen Holzfeuerungen wird die Wärmeabgabe i.d.R. lediglich über die zugeführte Verbrennungsluft gesteuert. Um die Wärmeabgabe zu verringern, wird die Luftzufuhr gedrosselt, was stets zu Sauerstoffmangel und unvollständigerVerbrennung mit entsprechenden Schadstoffemissionen führt. Kleine Holzöfen emittieren etwa so viel Kohlenmonoxid, Kohlenwasserstoffe und Staub wie Kohleeinzelöfen, jedoch kaum Schwefeldioxid (Heizung).

Eine wirklich optimale Holzverbrennung ist nur bei größeren Anlagen gewährleistet, bei denen vollautomatisch feinste Holzspäne eingeblasen und unter stetigem Sauerstoffüberschuß verbrannt werden. Holzfeuerungsanlagen über 1 MW sind genehmigungspflichtig und müssen über Staubfilter verfügen.

Regeln zum ökologischen Heizen mit Holz:
1. Nur mit trockenem (unter 16% Holzfeuchte), naturbelassenem Holz heizen. Brennholz mindestens 2 Jahre gespalten lagern. Feuchtes Holz hat einen stark geminderten Heizwert (bei 50% Wassergehalt ist der Heizwert mehr als halbiert) und verbrennt besonders unvollständig.
2. Brennholz soll kleinstückig sein und nur in kleiner Menge aufgegeben werden, damit die Flammen nicht ersticken.
3. Vor dem Anheizen ist die Asche aus dem Feuerraum und Aschenkasten zu entfernen. Nur freiliegende Rostflächen gewährleisten eine ausreichende Luftverteilung im Brennstoffbett und einen sauberen Abbrand.
4. Während des Abbrandes von Holz mit langer, leuchtender Flamme (Entgasungsphase) muß ausreichend Verbrennungsluft von unten durch die Anheizklappe und Feuerrost zugeführt werden, damit kein Schwelbrand entstehen kann, bzw. Ruß- und Pechbildung vermieden wird.
5. Die Luftzuführung soll erst dann gedrosselt werden, wenn die Verbrennung der Glut (Vergasungsphase) beginnt. Diese Phase ist an kurzen, durchscheinenden Flammen zu erkennen, die nicht zur Rußbildung neigen.
6. Ruß- und Flugascheablagerungen sind in regelmäßigen Abständen aus den Zügen der Feuerstätte zu entfernen. Das verbessert die Wärmeübertragung und mindert die Bildung schädlicher Gase.

Lit.: A.Schneider, Institut für Baubiologie und Ökologie: Die gesunde Heizung

Siehe auch: Holz, Verbrennung, Schwefeldioxid, Kohle

Autor: KATALYSE Institut

Hochtemperaturreaktor

Hochtemperaturreaktore sind spezielle Kernkraftwerke, die mit besonders hohen Temperaturen (Primärkreislauf bis 1000 Grad C) arbeiten, die zur Stromerzeugung mit hohem Wirkungsgrad (40%, gegenüber 30-35% bei normalen Kraftwerken) und zur Erzeugung von Prozeßwärme, z.B. zur Kohleumwandlung, genutzt werden können.

Wegen der hohen Temperaturen scheidetWasser als Kühlmittel und Moderator aus (Kernreaktor); statt dessen benutzt man Helium als gasförmiges Kühlmittel und Graphit (Kohlenstoff) als Moderator. Beim Thorium-Hochtemperaturreaktoren finden kugelförmige Brennelemente Verwendung, die in einer Graphitummantelung hochangereichertes Uran-235 (97%, waffentauglich (Atomwaffen)) als Spaltstoff (Kernspaltung) undThorium-232 als Brutstoff enthalten. Durch Neutroneneinfang wandelt sich das Thorium in den Spaltstoff Uran-233 um, wodurch die Uran-Vorräte (Energiereserven) gestreckt werden.
Der Hochtemperaturreaktor soll systembedingt eine Reihe von Sicherheitsvorteilen gegenüber den vorherrschenden Leichtwasserreaktoren (Kernkraftwerk) aufweisen, insb. ein unempfindlicheres Reagieren bei Kühlsystemausfällen.

Der weltweit einzige in Betrieb gegangene Hochtemperaturreaktor ist der Thorium-Hochtemperaturreaktor. in Hamm (Deutschland) mit einer Leistung von 300 MWel und Temperaturen bis zu 750°C. Er nahm im Mai 1986 nach 14-jähriger Bauzeit seinen Probebetrieb auf, wurde 1987 an die Betreiber übergeben und bereits 1989 stillgelegt. In der kurzen Betriebszeit traten eine Reihe von Störfällen auf, die Konstruktionsfehler und Sicherheitsdefizite aufdeckten. Ein Weiterbetrieb hätte hohe Zusatzinvestitionen erfordert, die weder der Betreiber noch Staat tragen wollten. Die Gesamtkosten für die Anlage betrugen ohne Stillegungs- und Abrisskosten ca. 4 Mrd DM (geplant: 650 Mio.), die zu 3/4 aus öffentlichen Geldern erbracht wurden.

Folgeprojekte zum Thorium-Hochtemperaturreaktor sind nicht vorgesehen. Auch um Pläne, kleine Hochtemperaturreaktoren in Großstädten zur Nahwärmeversorgung (Fernwärme) einzusetzen, ist es seit Tschernobyl still geworden.

Siehe auch: Wirkungsgrad, Kohleumwandlung

Autor: KATALYSE Institut

Hochspannungsleitung

Mit Hilfe von Hochspannungsleitung wird elektrische Energie (Elektrizität,Strom) über große Entfernungen transportiert.

Um die beim Verteilen von Strom zwangsläufig anfallenden Leitungsverluste geringzuhalten, wird die elektrische Spannung vor dem Verteilen in einem Umspannwerk auf 110 kV, 220 kV, 380 kV oder gar 800 kV hochgespannt (Transformator). Zum weiträumigen Verteilen werden heute das 220-kV- und v.a. das 380-kV-Netz verwendet (Gesamtlänge 220/380 kV-Netz 1988 (Westdeutschland): 29.000 km).

Umweltbelastungen: Das zentrale Erzeugen und weiträumige Verteilen von Strom ist energieverschwendend und damit umweltbelastend (Kraftwerk, Kraft-Wärme-Kopplung, dezentrale Energieversorgung). Auf 100 km Leitung gehen zwischen 1,5% und 6% der elektrischen Energie verloren, dies ist mehr als z.B. beim Eisenbahntransport von Steinkohle an Energie verlorengeht. Erst mit den noch seltenen Höchstspannungsleitungen (800 kV) ist ein relativ verlustfreier (0,5% auf 100 km) Stromtransport über größere Entfernungen möglich.

Strittig ist, ob die von Hochspannungsleitung ausgehenden elektrischen und magnetischen Felder bei Anwohnern Gesundheitsschäden verursachen (Elektrosmog). Die in Deutschland zulässige elektrische Feldstärke liegt bei 20 kV/m. Die Weltgesundheitsorganisation empfiehlt 5 kV/m, und Kritiker fordern einen Grenzwert von 2,5 kV/m. In der Regel liegen die unter einer Hochspannungsleitung auftretenden elektrischen Felder in Deutschland bei 3-8 kV/m und die magnetischen Felder bei einigen mycroTesla. Es ist schwierig, allgemeine Empfehlungen für den Abstand von Wohnhäusern zu Hochspannungsleitung zu geben, da je nach Spannung, Stromstärke und Leiteranordnung höchst unterschiedliche Felder in der Umgebung auftreten.

Will man den von Baubiologen vorgeschlagenen Grenzwert von 2,5 kV/m für das elektrische Feld einhalten, so ist bei einer 380 kV-Trasse ein Mindestabstand von 30 bis 60 m erforderlich (oder aufwendige, von Fachleuten installierte Abschirmungen). Die auftretenden Magnetfelder hängen unmittelbar von der Stromstärke ab, die sich über den Tagesverlauf ändert. Der Mindestabstand ergibt sich aus Vollastbetrieb und wird bei einer 380 kV-Trasse mit etwa 120 bis 200 m angegeben. Genaue Werte über die Feldstärken an einem konkreten Ort können nur durch Messungen (zu Vollastzeiten) ermittelt werden.

Ein besonderes Problem stellen hier die Hochspannungsleitung der Eisen-, S- und Straßenbahnen dar, die durch dichtbesiedelte Stadtgebiete führen.
Es liegen aus den USA mehrere Studien vor, die Leukämie, Lymphomen und Hirntumoren bei Kindern übereinstimmend in Zusammenhang mit elektromagnetischen Feldern bringen. Das Leukämierisiko für Kinder, die im direkten Umfeld von Hochspannungsleitung wohnen, liegt nach einer Studie, die 1988 im Auftrag der New Yorker Gesundheitsbehörde durchgeführt wurde, doppelt so hoch wie normal. Ebenso werden Auswirkungen auf die Tier- und Pflanzenwelt unter Hochspannungsleitung diskutiert.

In Deutschland sind knapp 1% der Gesamtfläche mit Hochspannungsleitung überspannt (Flächennutzung). Neben der optischen Belastung wird die Umweltbelastung v.a. durch die indirekte Flächeninanspruchnahme und die damit verbundenen landschaftlichen und ökologischen Stör- und Zerschneidefunktionen verursacht. Hinzu kommt eine starke Bodenbelastung durch Zink im Bereich des Mastfußes, weil dort der vom Regen abgewaschene zinkhaltige Grundierungsanstrich eingetragen wird. Fernwandernde Vögel können durch Aufprall gegen die Leitungen getötet werden. Indirekt sind Vögel durch Hochspannungsleitung durch das Zerschneiden von Biotopen und Naturschutzgebieten betroffen (Artensterben). Die Bildung von Ozon an den Hochspannungsleitung scheint zum Waldsterben beizutragen.

Hochspannungsleitung können nur bedingt durch Erdkabel ersetzt werden. Erdkabel sind technisch sehr aufwendig, schwer recyclebar, bis zu 15mal teurer und weisen höhere Verteilungsverluste auf. Von den in Westdeutschland insgesamt verlegten Stromkabeln der öffentlichen Versorgung (1.189.325 km) sind 65% Erdkabel und 35% Freileitungen. Im Hochspannungsbereich (110-380 kV) liegt der Anteil der Freileitungen allerdings bei 95%.
Die bei zentraler Erzeugung von Strom notwendige großflächige Verteilung von Strom kann durch dezentrale Energieversorgung und Stromeinsparungen reduziert werden.

Lit.: Ökologische Briefe 22.1.91, Krebs durch Stromtrassen, BINE Nr.12/1990, Raumbelastung durch Hochspannungsleitungen

Autor: KATALYSE Institut

Heizwerk

H. sind Anlagen, die aus unterschiedlichen Energieträgern durch Verbrennung Wärme gewinnen und diese in Nah- oder Fernwärmenetze oder industrielle Prozesse einspeisen.

Ihr Wirkungsgrad liegt bei etwa 80%, wobei bei der Verteilung der Wärme zusätzlich etwa 10% Leitungsverluste auftreten.
Schadstoffemissionen: Fernwärme

Siehe auch: Verbennung

Autor: KATALYSE Institut

Heizwärmebedarf

(auch: Jahres-Heizwärmebedarf) Der H. beschreibt die für die Beheizung eines Gebäudes benötigte Menge an Wärmeenergie (Energie) in Kilowattstunden je m2 beheizter Nutzfläche und Jahr (kWh/m2/a).

Der H. ist eine rechnerisch ermittelte Größe, die als "Energiekennzahl" (siehe auch: Heizenergiebedarf) Aufschluss über die wärmeschutztechnische Qualität eines Gebäudes gibt.

Bei der Berechnung des H. wird einerseits der Wärmebedarf berücksichtigt, der durch den Wärmedurchgang durch die Außenbauteile (k-Wert, Wärmedämmung) und durch den Luftaustausch (Luftwechsel, Lüften, Stoßlüften) bedingte Wärmeverluste entsteht. Andererseits fließen Wärmegewinne z.B. durch Elektrogeräte oder Wärmeabstrahlung von Personen (interne Wärmegewinne) sowie die durch die Sonneneinstrahlung durch Fenster oder andere transparente Flächen bedingten solare Wärmegewinne in die Berechnung mit ein.

Der H. hängt also wesentlich von der bauphysikalischen und konstruktiven Beschaffenheit des Gebäudes ab: Bauform, verwendete Baustoffe (k-Wert , Wärmedämmung), Fensterfläche und Fensterart (Fenster) und Bauausführung (Luftdichtigkeit, Niedrigenergiehaus). Der H. eines bestehenden Gebäudes kann mit Hilfe einer Energiebedarfsanalyse ermittelt und in einem Energiepass offenkundig gemacht werden.

Für neu zu errichtende Gebäude muss der H. Sinne der gültigen Wärmeschutzverordnung durch einen Wärmebedarfsausweis nachgewiesen werden. Der berechnete H. erlaubt allerdings lediglich eine grobe Abschätzung, wie viel Heizenergie (Primärenergie) tatsächlich für die Gebäudeheizung benötigt wird, da weder Nutzergewohnheiten (Raumklima, Lüften, Stoßlüften) noch die Art der Energiebereitstellung (Heizungsart, Brennwertkessel, Niedertemperatur-Heizsysteme) und die damit verbundenen Energieverluste berücksichtigt werden. Der H. stellt in älteren Gebäuden mit ca. 75 % den höchsten Anteil am Energieverbrauch (Energie).

Autor: KATALYSE Institut

Heizungsanlagenverordnung

Die H. setzt folgende Anforderungen an die energiesparende Ausrüstung und den Betrieb von Heizungsanlagen:

  • Verhinderung der Überdimensionierung von Wärmeerzeugern,
  • Dämmung von Wärmeerzeugern und Rohrleitungen,
  • außentemperaturabhängige Regelung der Heizungsvorlauftemperatur,
  • Möglichkeit der Abschaltung der Heizung zu bestimmten Zeiten über eine Zeitschaltuhr,
  • Ausrüstung der Heizkörper mit Thermostatventilen,
  • Begrenzung der Verluste von Brauchwasseranlagen,
  • Pflicht zur Wartung und Instandhaltung der Heizungsanlage.

Bei Einhaltung der H. können erhebliche Energieeinsparungen erzielt werden. Allerdings wird die Einhaltung der H. von keiner Behörde überprüft. Mieter von Gebäuden mit hohen Heizkosten sollen überprüfen, ob die Heizungsanlage des Gebäudes die Vorschriften der H. einhält. Bei Nichteinhaltung kann der Hausbesitzer mit einem Bußgeld belegt werden.

Autor: KATALYSE Institut

Heizung

Im Jahr 2000 waren die privaten Haushalte mit fast 28 Prozent am gesamten Endenergieverbrauch Deutschlands beteiligt; 1990 waren es erst 25 Prozent. Damit stehen die privaten Haushalte an zweiter Stelle hinter dem Verkehr (mit rund 30 Prozent), aber noch vor der Industrie (26,5 Prozent). In den privaten Haushalten liegt der Anteil der H. am Energieendverbrauch sogar bei 76 Prozent und 11 Prozent für Warmwasserbereitung.

Wie viel Energie ein Haus zum Heizen benötigt, hängt in erster Linie von seiner Wärmedämmung (k-Wert) ab, die den Wärmebedarf bestimmt und bei guter Ausführung Umweltbelastungen und Energieverbrauch mehr als halbieren (Niedrigenergiehaus; Passiv-haus,) oder sogar ganz vermeiden kann (Nullenergiehaus). Seit 1.02.2002 gilt die Energie-einsparverordnung für Gebäude (EnEV) und verbreitet die Niedrigenergie-Bauweise als Standard.

Die H.-Systeme unterscheiden sich deutlich hinsichtlich Primärenergieverbrauch und Emis-sionen. Eine große Rolle spielt zudem das Nutzerverhalten (Raumklima, Lüften, Stoßlüften). Umweltschonende H.-Systeme, die geringe Energieverluste aufweisen und wenig Schadstoffe emittieren, sind v.a. Nahwärme, Fernwärme und Erdgas-Brenner. Moderne Gasfeuerungen erreichen Wirkungsgrade von über 90 Prozent im Winterbetrieb (Sommerbetrieb 50 bis 60 Prozent, Sonnenkollektoren). Bei den Gasbrennern stellt der Brennwertkessel in Verbindung mit Niedertemperatur-Heizsystemen die optimale Lösung dar. Auch Ölbrenner arbeiten heute mit hohen Wirkungsgraden und auch mit Brennwerttechnik. Probleme bereiten aber die relativ hohen Schwefeldioxid-Anteile im Abgas von Heizöl. Wobei Strom die am leichtesten zu transportierende Energie ist und die Risiken von Tankwagentransporten, Erdgaspipelines und die Folgen der Transporte (Umweltbelastung durch Abgase, Straßenbau usw.) entfallen.

Ökologisch ungünstig sind v.a. elektrisch Heizen (Elektrospeicherheizung), Ofenheizung, und alte Erdöl-Brenner. Alte Zentral-H. haben oft nur einen Wirkungsgrad von unter 70 Prozent, bedingt durch hohe Wärmeverluste über die Abgase, Überdimensionierung der Anlagen und falsche Brennereinstellung. Die Anschaffung einer neuen H. kann sich schon innerhalb weniger Jahre amortisieren. Viele Hausbesitzer müssen in den nächsten Jahren ihre H. austauschen, weil sie mehr Schadstoffe auspustet als zulässig. Mit der neuen Energiespar-verordnung, die im Februar 2002 in Kraft trat, will die Bundesregierung technisch veraltete H. (Einbau vor dem 1.10.1978) spätestens bis zum Jahr 2008 aus dem Verkehr ziehen.

Die Staubemissionen aus Hausfeuerungen als auch der Abgasverlust werden in den Verordnungen zum Bundesimmissionsschutzgesetz (BImSchV) begrenzt. Nach der BImSchV gilt der Abgasverlust, der im Schornsteinfegerprotokoll ausgewiesen ist, als Maß der Dinge: bei H. zwischen 4 und 25 Kilowatt Leistung darf er maximal 11 Prozent betragen, bei 25 bis 50 Kilowatt Leistung maximal 10 Prozent. Werden diese Werte überschritten, muss die H. bis zum 1.11.2004 nachgerüstet oder still gelegt werden.

Literatur:
Knieriemen, Heinz; Frei Peter: Heizen mit

Holz - ökologisch und gesund; Das Praxisbuch für traditionelle und moderne Öfen, Herde und Heizsysteme; AT Verlag 2003; ISBN 3855029296; EUR 27,90

Richtig heizen - Heizsysteme und Warmwasser; Konsument extra; ISBN 3901359427; Ver-ein für Konsumenteninformation Verlag 1998; EUR 11,48

Fröse, Heinz-Dieter: Elektrische Heizsysteme; ISBN 3790506982; Pflaum Verlag 1995; EUR 27,61

 

Siehe auch: Wärmepumpe, Heizkostenverordnung, Heizungsanlagenverordnung, Verbrauchsabhängige Heizkostenabrechnung, Rußzahl, Verbrennung

Autor: KATALYSE Institut

Heizöl

Leichtes und schweres H. wird in Raffinerien (Naphtha) aus Erdöl gewonnen. Leichtes (EL) H. wird zur Heizung von Gebäuden verwandt.

Das zähflüssigere schwere (S) H. benutzt man als Industriebrennstoff und zur Feuerung von Kraft-, Heizkraft- und Heizwerken. Bei Herstellung und Verbrennung von H. werden zahlreiche Schadstoffe frei, so z.B. Schwefeldioxid, Stickoxide und Kohlendioxid (Kohlendioxid-Problem, Treibhauseffekt).

Der Gehalt an Schwefel, der zu Schwefeldioxid verbrennt, ist für leichtes H. seit 1979 auf 0,3% begrenzt (Schwefelgehaltsverordnung). Eine weitergehende Entschwefelung auf 0,15% wird von den Raffinerien bereits praktiziert; eine generelle Senkung scheitert bislang an einer fehlenden EG-Richtlinie. Private und öffentliche Kunden können jedoch bei nur geringen Mehrkosten von 1 bis 2 Pf/l bei fast allen H.-Händlern schwefelarmes H. beziehen.

Schweres H. enthält bis zu 3% Schwefel. Um die Auflagen der Großfeuerungsanlagenverordnung ohne Rauchgasentschwefelungsanlage einhalten zu können, verfeuern Kraftwerke mit weniger als 300 MW thermischer Leistung schweres H. mit einem Schwefelgehalt von 1,4%.
Emissionen bei der Verarbeitung und Verbrennung von H.: Raffinerie, Heizung, Ofenheizung, Kraftwerk, Fernwärme

Autor: KATALYSE Institut

Heizkraftwerk

In H. wird in Kraft-Wärme-Kopplung Strom und Wärme erzeugt.

Der Wirkungsgrad moderner Anlagen beträgt 80% (25% als Strom und 55% als Wärme). Bei der Verteilung der Wärme über Fernwärmenetze gehen zusätzlich ca. 10% als Leitungsverluste verloren.
Gegenüber Kraftwerken, die mit einem Wirkungsgrad von 35-40% Strom erzeugen und die Wärme ungenutzt in die Umwelt abgeben, bedeutet der Einsatz von H. eine beträchtliche Ressourcenschonung und Emissionssenkung. Kleine H. zur dezentralen Energieversorgung nennt man Blockheizkraftwerke.
Schadstoffemissionen von H.: Fernwärme, Kraftwerk

Siehe auch: Kraft-Wärme-Kopplung, Strom

Autor: KATALYSE Institut

Hausfeuerung

Siehe Heizung, Ofenheizung, Brennwertkessel

Autor: KATALYSE Institut

Globalstrahlung

Die G. gibt an, wieviel Sonnenenergie auf der Erdoberfläche zur Verfügung steht.

Um diese Energie zu bestimmen, beginnt man mit dem Strahlungsangebot außerhalb der Atmosphäre. Die sog. Solarkonstante gibt die Strahlungsleistung an, die außerhalb der Erdatmosphäre senkrecht auf eine Fläche trifft. Ihr Wert liegt bei etwa 1,35 kW/m2. 90% dieser Solarstrahlung liegt im Bereich des sichtbaren Lichts (Tageslicht) und des nahen Infrarots.

Auf dem Weg durch die Atmosphäre bis zur Erdoberfläche gehen 53% der Solarleistung durch Reflexion und Absorption verloren. Die verbleibenden 47% setzen sich zusammen aus direkter Solarstrahlung und diffuser Himmelsstrahlung, die Summe beider Komponenten wird als G. bezeichnet. Unter direkter Solarstrahlung versteht man den Anteil der Strahlung, der direkt aus der Sonnenrichtung als Parallelstrahlung einfällt. Diffuse Himmelsstrahlung dagegen ist der Anteil, der durch Streuung an Molekülen und Aerosolen der Atmosphäre aus allen Richtungen auf die Erdoberfläche trifft.

Die Energie, die jährlich als G. auf die Erdoberfläche gelangt, liegt mit 705 Mio TWh um das 7.000fache über dem jährlichen Weltenergieverbrauch (Energie, regenerative Energiequellen, Solarenergie).
In Wüstengebieten (Wüste) im Sonnengürtel der Erde finden wir eine jährliche G. von über 2.200 kWh/m2 mit einem Direktstrahlungsanteil von über 80%.

Solche Gebiete eignen sich ganz besonders zum Betrieb von Solarkraftwerken, die die Solarstrahlung mit Spiegeln fokussieren.
In Deutschland liegt die jährliche G. bei nur 900-1.100 kWh/m2 bei einem Direkstrahlungsanteil von durchschnittlich 50%, der bei starker Bewölkung ganz entfallen kann.
Vgl. auch Graphik: Strahlungsbilanz

Siehe auch: Sonnenergie

Autor: KATALYSE Institut

Gezeitenkraftwerk

Mond und Sonne verursachen durch ihre Anziehungskräfte zusammen mit der Rotationsbewegung der Erde Ebbe und Flut.

G. nutzen diese regenerative Energiequelle zur Stromerzeugung. Hierzu werden ganze Meeresbuchten durch eine Staumauer vom Meer abgetrennt. Das in die bzw. aus der Bucht strömende Wasser treibt Turbinen zur Stromerzeugung an. Nur wenige Meeresbuchten eignen sich für G., da ein großer Tidenhub (Höhendifferenz Flut-Ebbe) notwendig ist.

G. verändern das Ökosystem der abgetrennten Bucht und können die Gezeiten der Nachbarbuchten beeinflussen. Das älteste G. befindet sich in der Mündung der Rance (Bretagne), weitere G. arbeiten in der ehem. UdSSR und Kanada. Kanada und England planen bis 2010 zwei große G. in Betrieb zu nehmen (Kanada: 5.000 MW).

Siehe auch: regenerative Energiequellen

Autor: KATALYSE Institut

Geothermische Energie

Anlagen zur Nutzung von G. verwenden die im Erdinnern gespeicherte Erdwärme als Energiequelle. Dies ist nur in vulkanischen und geologisch mobilen Gebieten möglich, wo heiße Wasseradern (z.B. Thermalquellen) bis an die Erdoberfläche treten.

Das heiße Wasser kann zu Heizzwecken, der heiße Dampf zur Stromerzeugung (Strom) genutzt werden. Die weltweit umfangreichsten Nutzungen von G. finden sich in Kalifornien, wo 1987 etwa 2.100 MW elektrische Leistung genutzt werden, in der Toscana (Italien) versorgen G.-Kraftwerke von insgesamt 450 MW die gesamte Toscana und die italienische Eisenbahn mit Strom. In Island heizen 80% der Bevölkerung mit G.. Mögliche Gebiete zur Nutzung der G. in Deutschland sind das Norddeutsch-Polnische Becken, der obere Rheingraben und Süddeutschland.

Die in Norddeutschland und im Rheingraben genutzten G.-Vorkommen liegen im Temperaturbereich zwischen 40 und 100 Grad C und werden aus tiefliegenden Sandsteinschichten (1.000 bis 2.500 m Tiefe) gefördert. Umweltbelastungen treten insb. dann auf, wenn das zu Heizzwecken genutzte Wasser bzw. der in Kraftwerken zu Wasser kondensierte Dampf ungereinigt in Flüsse geleitet wird. Hierbei gelangen je nach Quelle große Mengen Salz, Schwefel und anderer Mineralien in die Umwelt.

Durch das Zurückpumpen des Wassers in den Erdboden können diese Belastungen und evtl. Bodenabsenkungen durch die Wasserentnahme vermieden werden. Die Rückführung des genutzten Wassers ist zudem oft eine wichtige Voraussetzung zur Erhaltung der Ressourcen. Arbeiter müssen vor den aus den Bohrlöchern entweichenden, teils giftigen Gasen (z.B. Schwefelwasserstoff) geschützt werden.

Siehe auch: Regenerative Energiequellen

Autor: KATALYSE Institut

Latex

Latex ist der Milchsaft verschiedener Pflanzenarten, insbesondere des Kautschukbaumes (Hevea brasiliansis). Heute wird der Begriff Latex auch für alle Dispersionen von natürlichen und synthetischen Kautschuk verwendet.

Die Gewinnung von Naturkautschuk erfolgt zu fast 99 Prozent aus dem Latex, der beim Anritzen der Sekundärrinde der Stämme von Kautschukbäumen ausfließt. Der im Amazonasgebiet einheimischer Baum (Höhe: ca. 15 bis 20 Meter; Stammdurchmesser: 60 bis 74 cm), wird in fast allen Tropengebieten Afrikas, Asiens und Südamerikas in großem Umfang plantagenmäßig angebaut. Andere kautschukführende Pflanzen werden zur Gewinnung von Naturkautschuk nur in geringem Umfang genutzt. Ein mittelgroßer Kautschukbaum liefert täglich etwa 7 Gramm Latex. Latex ist eine Emulsion von 0,0005 bis 0,001 mm großen Naturkautschuk-Tröpfchen in Wasser. Je 100 Gramm Latex  enthalten etwa 30 bis 35 Gramm Naturkautschuk, Proteine, Sterine, Fette, Kohlenhydrate (zusammen 4,5 bis 5 Gramm) und 0,5 Gramm mineralische Bestandteile, der Rest ist Wasser.

Zur Stabilisierung wird Naturlatex mit Ammoniak versetzt, eingedampft, zentrifugiert oder aufgerahmt bis auf Trockengehalte von 60 bis 75 Prozent. Der größte Teil des gezapften Latex wird zu Festkautschuk verarbeitet wobei keine Aufkonzentration notwendig ist. Der Kautschuk wird hierbei durch Verdunstung des Wassers oder durch Gerinnung mit Hilfe von Säuren abgeschieden und anschließend getrocknet. Für die meisten Anwendungen wird der gewonnene Latex oder Festkautschuk nach Überführung in die gewünschte Form vulkanisiert.

Die 1840 von dem Amerikaner Goodyear erfundene Vulkanisation führt mit Hilfe von Schwefel, bei Temperaturen von 130 bis 140 °C, über eine Verknüpfung der Naturkautschuk-Moleküle zu den allgemein als „

Gummi“ bezeichneten Produkten. Je nach Verwendungszweck werden bei der Kautschukverarbeitung eine Vielzahl von Stoffen (z.B. Füllstoffe, Pigmente, Weichmacher, Alterungsschutz etc.) eingesetzt. Im Zuge der fortschreitenden Entwicklungen auf dem Sektor der Synthese-Kautschuke ist jedoch Naturkautschuk immer mehr in die Rolle eines „Spezial-Kautschuks“ gedrängt worden.

Die wichtigsten Anwendungsfelder für Naturkautschuk sind heute:

  •  Reifen (LKW-Reifen, PKW-Radial-Reifen)
  •  Dünnwandige, weiche Produkte (z.B. Handschuhe, Luftballone, Kondome)
  •  Schaumgummi (z.B. Polster, Matratzen)

Das 1928 entwickelte Dunlop-Verfahren ist das meist genutzte Herstellungsverfahren für Schaumgummi-Produkte, hierbei werden die Latices mit Schwefel, Vulkanisationsbeschleunigern, Alterungsschutzmitteln, usw. sowie mit Seife und einem Koagulationsmittel (Gerinnungsmittel) versetzt und anschließend mechanisch in Rührwerken (Prinzip von Sahneschlagmaschinen) aufgeschäumt werden. Der Latexschaum wird in Formen gegossen, in heißem Wasserdampf vulkanisiert. Die fertigen Teile werden abschließend gewaschen und in Spezialöfen getrocknet.

Bei jeder Plantagenwirtschaft führt v.a. die Neuanlage zu erheblichen Eingriffen in die Landschaft und den Naturhaushalt. Die Bewirtschaftung in Monokulturen ist häufig intensiven Einsatz von Pflanzenschutzmitteln verbunden, die zu Belastungen in der Nahrungskette und nachhaltigen Veränderungen in der Flora und Fauna führen.

Heute wird Rohkautschuk immer noch klassischen Methoden (Sammlung in Wildbeständen oder bestehende Plantagen) gewonnen, so dass weitesgehend auf den Einsatz von Pflanzenschutzmittel verzichtet wird.
Auf Schadstoffbelastungen im L. und den Fertigprodukten sollte geachtet werden. Schadstoffquellen ergeben sich durch Rückstände aus der Latexproduktion (z.B. VOC), Nebenprodukte der Vulkanisation (z.B. Nitrosamine, CS2) oder Mittel zum Schutz gegen Schimmelbildung beim Transport (z.B. PCP).

Siehe auch: Latexallergie

Autor: KATALYSE Institut