Chemische Evolution

Die chemische Evolution beschreibt die chemischen Prozesse nach dem Urknall.
Sekundenbruchteile nach der Urexplosion bildeten sich erste Strukturen aus. Aus Erkenntnissen der Teilchenphysik lassen sich kosmische Prozesse berechnen und vorhersagen. So ist zu erwarten, dass sich noch innerhalb der ersten Sekunde jeweils drei Quarks zu einem Proton bzw. einem Neutron vereinigten. Dabei sank die Temperatur auf 1010 Grad. Bei dieser Energiedichte können aus Photonen nicht mehr Elektronen und ihre Antiteilchen, die Positronen, erzeugt werden. Positronen und Elektronen anihilieren, d. h. zerstrahlen – es bleibt ein geringfügiger Überschuss an Elektronen. Bereits eine Minute nach dem Urknall vereinigen sich jeweils zwei Neutronen mit zwei Protonen zum Atomkern He2+ (Helium). Nach drei Minuten ist die Temperatur auf 109 Grad gefallen. Das expandierende Weltall setzt sich jetzt aus etwa 24% Helium und etwa 76% Wasserstoffkernen zusammen (sowie Spuren leichter Elemente). Elemente mit höherer Ordnungszahl als Helium (von den Astronomen als „Metalle“ bezeichnet) wurden in späteren Entwicklungsstadien des Kosmos gebildet. Bei weiterer Abkühlung des Universums entstanden elektroneutrale Wasserstoff- und Heliumatome (sowie Spuren von Lithium) durch Elektroneneinfang. Dieser Prozess reduzierte drastisch die Anzahl freier Elektronen und der Kosmos wurde „durchsichtig“, d. h. Photonen vermochten nun ungehindert den Raum zu durchqueren, ohne an freien Elektronen gestreut zu werden. Etwa 300.000 Jahre nach dem Urknall herrschten Temperaturen, bei denen sich Elektronen und Kerne zu Atomen vereinigen konnten. In den folgenden Zeiträumen bildeten sich an einigen Stellen des Alls Massenverdichtungen. Es entstanden die ersten Gestirne. Diese ersten Sterne bestanden nur aus Wasserstoff und Helium, wodurch ihre Lebenszeit im Vergleich zu rezenten Sternen „nur“ bei wenigen Millionen Jahren lag.
Nach weiteren hunderten Millionen Jahren nach dem Urknall (einige Astrophysiker nennen etwa eine Milliarde Jahre) betrug die Temperatur nur noch etwa 18 K, um dann bis zum Wert von 3 K (genau: 2,73 +- 0,01 K) abzusinken.
Bei diversen „Brennprozessen“ der Sterne bilden sich mittelschwere Elemente (He, C, O, N, S etc.). Ein Beispiel: Bei einem dreifachen Alpha-Prozess – d. h. freie Heliumkerne, die aufeinander treffen – entsteht 12C (Kohlenstoff). Welche Elemente gebildet werden können hängt von der Masse der Sterne ab.
Die Synthese schwerer Elemente (Metalle) erfolgt bei Supernova-Explosionen (Tod eines Sterns).
Der weitere Verlauf, d. h. die Verbindung der Atome zu Molekülen, hängt in den häufigsten Fällen mit thermischen Energien als Katalysator zusammen. In den seltensten Fällen auch autokatalytisch. Letzteres aber vor allem bei der Biogenese. Über diese gibt es heute aber wenig Wissen jedoch viele Hypothesen.

Autor: KATALYSE Institut

Veröffentlicht in Alphabetisch, C, Chemie & Prozesse, Substanzen & Werkstoffe, Weiteres / Sonstiges.

Schreibe einen Kommentar

Deine E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert